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Wide-field optical-resolution microscopy with structured illumination and single-pixel detection has been 
the topic of a number of research investigations. Its advantages over point scanning approaches are 
many and include a faster acquisition rate for sparse samples, sectioning, and super-resolution features. 
Initially introduced for fluorescence imaging, structured illumination approaches have been adapted and 
developed for many other imaging modalities. In this paper, we illustrate how speckle illumination, as a 
particular type of structured illumination, can be exploited to perform optical-resolution photoacoustic 
microscopy with a single-pixel imaging approach. We first introduce the principle of single-pixel detection 
applied to photoacoustic imaging and then illustrate in 2 different situations how photoacoustic images 
may be computationally reconstructed from speckle illumination: In the first situation where the speckle 
patterns are known through a prior calibration, various reconstruction approaches may be implemented, 
which are demonstrated experimentally through both scattering layers and multimode optical fibers; in 
the second situation where the speckle patterns are unknown (blind structured illumination), the so-
called memory effect can be harnessed to produce calibration-free photoacoustic images, following the 
approach initially proposed for fluorescence imaging through thin scattering layers.

Introduction

Photoacoustic imaging, also called optoacoustic imaging, is an 
imaging technique that provides optical contrast via the detec
tion of sound. It is based on the photoacoustic effect, defined 
as the emission of acoustic waves following the absorption of 
light by optical absorbers through thermoelastic stress gener
ation. Although the photoacoustic effect was discovered by 
Graham Bell more than a century ago [1,2], the topic of bio
medical photoacoustic imaging has undergone a tremendous 
development over the past 2 decades [3–6]. One feature unique 
to photoacoustic imaging is that it can provide images of optical 
absorbers embedded deep in multiply scattering media (such 
as blood vessels in biological tissue) with the resolution of ultra
sound. In this regime where light is multiply scattered, photo
acoustic imaging is referred to as acousticresolution photoacoustic 
imaging (ARPAM). In practice, the depthtoresolution ratio 
of ARPAM in biological tissue is on the order of 200 [3,4]: As 

an example, optical images with a resolution of 100 μm may be 
obtained at a depth of around 2 cm, where purely optical tech
niques such as diffuse optical tomography would be limited to 
a centimeter resolution. Beyond this feature, unique among 
optical imaging techniques, another important feature of photo
acoustic imaging is its specificity to optical absorption (as 
opposed to optical scattering), as pressure waves are generated 
only through optical absorption. In parallel to imaging at depth 
with the resolution of ultrasound, photoacoustic imaging has 
thus also been applied to the field of opticalresolution microscopy 
[7]. In a similar way to alloptical microscopy techniques such 
as fluorescence scanning microscopy, fluorescence sensing is 
simply replaced by acoustic sensing. In its most common imple
mentation, opticalresolution photoacoustic microscopy (often 
referred to as ORPAM) is based on raster scanning a focus beam 
over a 2dimensional (2D) sample [7], and the image is straight
forwardly built from the acoustic energy measured at each scan step, 
similarly to scanning fluorescence microscopy. Importantly, in 
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ORPAM, the resolution is dictated by the resolution of the 
illumination pattern, while the detection of sound is performed 
with a singleelement transducer.

While scanning approaches are the most straightforward 
ones, they have several limitations, including long acquisition 
times (proportional to the field of view) and a resolution lim
ited by the optical diffraction limit and depth dependence. For 
fluo rescence imaging, several alternative to scanning micros
copy have been proposed to tackle its limitations, particularly 
techniques based on singlepixel approaches, either via struc
tured illumination or via structured detection. Because ORPAM 
is very close in its principle to fluorescence microscopy with a 
bucket detector, with fluorescence detection simply replaced 
by acoustic detection, many techniques developed for fluores
cence can be adapted to photoacoustic microscopy. Structured 
illumination (or equivalently singlepixel) photoacoustic micros
copy was first proposed by Liang et al. [8] and Yang et al. [9]: The 
authors adapted the principles of Fourierencoded microscopy, 
where fullfield illumination patterns (such as fringes [9]) are 
used to perform the measurement with a singleelement trans
ducer, and spatially resolved images are reconstructed from 
decoding the series of measurement through Fourier analysis. 
To our knowledge, these were the first papers to implement the 
socalled singlepixel imaging approach to photoacoustic micros
copy. While scanningbased ORPAM remains the most common 
way to perform ORPAM [10], several groups have implemented 
singlepixel imaging approaches for ORPAM in the past few 
years [11–15]. In this paper, we present proofofprinciple 
results obtained by our group by use of multiple speckle illu
mination in ORPAM. We note that this approach was also 
implemented and published by another group [12], in parallel 
to our own work and first preliminary results presented at a 
conference in early 2017 [11]. In the context of this special issue 
in Intelligent Computing, we wrote this paper with a potentially 
broad readership in mind by recalling several basic principles 
involved in our work (photoacoustic imaging, singlepixel 
imaging, and reconstruction approaches) before presenting 
more specifically our experimental results. We first define and 
theoretically describe our framework for singlepixel imaging 
photoacoustic detection and discuss why speckle patterns are 
of particular interest, as compared to other types of structured 
illumination patterns such as fringes or Hadamard patterns, 
for instance. We then consider the most usual situation where 
the speckle illumination patterns are known via a calibration 
step prior to measuring a sample and introduce 3 standards 
and popular reconstruction methods for singlepixel imaging 
approaches. In particular, we consider speckle patterns pro
duced through either optical diffusers or multimode optical 
fibers. We finally consider a second situation where the speckle 
patterns are unknown (blind structured illumination) but 
where a socalled memory effect can be exploited to produce 
calibrationfree photoacoustic images, following the approach 
initially proposed for fluorescence imaging through thin 
scattering layers [16]. We illustrate all situations with results 
obtained with proofofconcept experiments.

Single-Pixel Photoacoustic Detection
We first recall the general principle of singlepixel detection, 
independently of the nature of the detected signals. We then 
discuss conditions under which a photoacoustic measurement 
can be described in the framework of singlepixel detection. 

Image reconstruction approaches are introduced in the next 
sections.

Principles of single-pixel detection
We consider an object O(r) and an interrogation pattern ϕk(r). 
In the framework of singlepixel imaging, a set of singlepixel 
measurements are given by the following expression,

where ϕk = {ϕk}k=1, …, P is a set of P interrogation patterns. We 
note that the interrogation patterns may, in practice, describe 
either illumination patterns or detection patterns. Different 
terms such as singlepixel imaging, ghost imaging, and struc
tured illumination imaging are found in the literature, which 
use generally depends on communities [17]. In this work, we 
refer to singlepixel imaging indifferently whether the interro
gation patterns are defined on the illumination path or on the 
detection path. In the specific case of photoacoustic imaging 
for which the patterns are always illumination patterns, we will 
also refer to singlepixel imaging. The formalism presented here 
is however valid for both structured illumination or structured 
detection, provided that the measurement is described in Eq. 1.

For some reconstruction methods, it is often useful to write 
Eq. 1 as a scalar product between the interrogation pattern and 
the object, as Sk=⟨ϕk, O⟩. In the most common case of 2D imag
ing, the object and interrogation patterns are 2D functions 
[O(r)=O(x, y) and ϕk(r) = ϕk(x, y)], but the principle of single 
pixel measurement described by the equation above is valid for 
any space dimension. Note that it is assumed in singlepixel 
imaging that ϕk does not depend in any way on the object O to 
reconstruct [18]. In practice, objects and interrogation patterns 
are often spatially sampled, and the measurement can be mod
eled with the following equivalent discrete form:

For some other reconstruction algorithms, as described in 
further detail in the “Image reconstruction methods” section, 
the measurement may also be conveniently written as a linear 
matrix operation,

where S = {Sk}k=1, …, P is the measurement vector, and O = 
{Oi}i=1, …, N ={O(ri)}i=1, …, N is the vector that describes the object 
over the N pixels of the sampled space. Φ = [Φki] = [ϕk(ri)] is 
thus a P × N matrix whose rows describe each interrogation 
pattern.

Depending on the nature and properties of the P interroga
tion patterns, there exist a number of methods to reconstruct 
the object O(ri) from the measurement Sk [17–19], some of 
which are introduced in the “Image reconstruction methods” 
section. Equation 1 describes the measurement process for a 
number of imaging methods based on the detection of electro
magnetic waves, across the whole spectrum, including visible 
light, xrays, terahertz waves, and infrared. It is however not 
limited to electromagnetic waves, and various imaging methods 
based on other kind of detected wave may implement single 
pixel imaging, including photoacoustic imaging. Most gener
ally, the interrogation patterns may correspond either to 
structured detection or structured illumination [17]. From now 
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on, in the context of photoacoustic imaging, we only considered 
the case of structured illumination. As we discuss in the next 
section, measurements in photoacoustic imaging may also be 
described in Eq. 1, under specific conditions.

Application to photoacoustic detection
For most imaging methods based on the detection of electro
magnetic waves, Eq. 1 is a direct consequence of the incoherent 
nature of the detected photons: In fluorescence imaging, for 
instance, the total detected intensity is given by the sum of the 
intensity emitted by each fluorophore. From that perspective, 
photoacoustic imaging is quite different from incoherent opti
cal imaging techniques, as it relies on the detection of pressure 
signal that arise from the coherent summation of pressure fields 
emitted by illuminated optical absorbers. As we now demon
strate, Eq. 1 may nevertheless describe photoacoustic measure
ments with a singleelement acoustic transducer (the acoustic 
“singlepixel”), provided that some conditions are met. Under 
the thermal confinement assumption (always verified for prac
tical imaging application in biological tissue), the generation 
of photoacoustic waves p(r, t) is described by the following 
equation [20,21]:

where ϕr(r, t) is the local fluence rate, μa(r) is the local absorp
tion coefficient, Γ is the Grüneisen coefficient, and cs the con
stant speed of sound. Most implementations of photoacoustic 
imaging are based on nanosecond pulsed illumination, for 
which the fluence rate can be separated as ϕr(r, t) = ϕ(r)f(t), 
with ϕ(r) as the local fluence (that describes the pulse energy 
at position r) and f(t) as a temporal pulse profile. If one con
siders a pointlike acoustic detector, then the detected acoustic 
waves are filtered by the impulse response g(t) of the detector. 
By noting h(t) = f(t) ∗ g(t) as the global impulse response, 
which takes into account the illumination pulse temporal pro
file and the tranduscer response, and by use of the Green’s 
function of the 3D wave equation, the signal s(rd, t) measured 
by a pointlike detector at positon rd can be expressed as [21],

Equation 5 is similar to Eq. 1, but the integral includes an 
additional term that accounts for the coherent summation of 
pressure waves. If one now assumes that the integral is limited 
to a volume centered around r0, with size small enough such that 
all the photoacoustic waves arrive approximately in phase to the 
detector, then the detected signal can then be approximated as:

The expression above indicates that the amplitude of the 
detected temporal signal is exactly that given in Eq. 1, i.e., it 
measures the scalar product between the object to reconstruct 
[defined in photoacoustic imaging by μa(r)] and the fluence 
illumination pattern. In practice, the most straightforward 

singlepixel photoacoustic measurement is provided a simple 
peak amplitude detection. For a series of multiple illumination 
patterns defined by ϕk(r), the corresponding series of pho
toacoustic “singlepixel” measurement is then given by

As discussed above, this expression is valid only if all the 
waves are emitted within a volume smaller than the acoustic 
coherence volume, i.e., the volume from which all the detected 
signals will be in phase. Its size depends both on the signal 
frequency content and the geometrical configuration of the 
point detector relative to the sample. Focused singleelement 
transducers may also be used to detect the photoacoustic waves, 
and in this case, the detected signal may also be described 
approximately in Eq. 7, where the integral is limited to around 
the acoustic focus, with dimensions dictated by the axial and 
lateral resolutions. In our experimental demonstrations pre
sented further below, we used either a focused transducer (for 
experiments through a diffuser) or a pointlike fiber optic sen
sor (FOS) (for experiments through a multimode waveguide), 
with geometrical configuration such that all parts of the absorb
ing samples could be considered within the coherence volume 
of the detectors.

Speckle illumination for single-pixel imaging
Measurements as described in Eq. 1 may be implemented with 
many different types of illumination patterns. The simplest sit
uation occurs when the illumination patterns consist of focused 
optical spots scanned over the sample: In this case, the mea
sured signal directly senses the object properties averaged over 
the extent of the focused spot. This is the principle of scanning 
microscopy, such as scanning fluorescence microscopy [22] or 
scanning ORPAM [10], which provides images with a spatial 
resolution directly given by the size of the focused spot. The 
number of illumination patterns is thus generally chosen such 
that the spot is scanned over the whole field of view, with spatial 
steps typically given by the size of the spot. While this approach 
has the advantage of optimizing the signaltonoise ratio and 
does not require any reconstruction process, 2 of its major lim
itations are its diffractionlimited and depthdependent reso
lution and its long acquisition times (proportional to the area 
of the field of view). Various widefield structured illumination 
techniques have been introduced in optical microscopy to pal
liate at least one of these limitations [23–25]. The various pos
sible types of structured illumination patterns may be split into 
2 classes, one corresponding to patterns that are straight
forwardly described in simple mathematical forms, such as 
fringes patterns or Hadamard patterns, and the other corre
sponding to seemingly random (but deterministic and repro
ducible) patterns whose statistical properties only may be 
simply described mathematically, such as speckle patterns. In 
the context of this paper, we focus on multiple speckle illumi
nation, whose major and key advantage is the extreme simplicity 
and robustness with which speckle patterns can be generated. 
Generating patterns of the first class not only requires sophis
ticated and expensive spatial light modulator (SLM) but is also 
potentially very sensitive to propagation from the SLM to the 
sample through aberration, for instance. On the contrary, as 
will be illustrated in the next sections, speckle patterns can be 
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straightforwardly generated in various situations, including prop
agation through optical diffusers or multimode optical fibers.

Photoacoustic Microscopy with Known  
Speckle Illuminations
In this section, we consider the case for which the set of speckle 
patterns {ϕk} used to illuminate the sample is known. In exper
imental practice, this requires a calibration step, prior to the 
measurements performed on the sample. We first introduce 3 
possible reconstruction methods well adapted to speckle illu
mination. We then present experimental results obtained in 
2 different situations, one for which speckle patterns are gen
erated through an optical diffuser and the other for which they 
are generated through multimode waveguides.

Image reconstruction methods
This section recalls the principle of 3 popular reconstruction 
methods in the field of singlepixel imaging, which are applied 
on experimental photoacoustic data in the next section. Note 
that both the object to reconstruct and the P illumination pat
terns are spatially sampled over N pixels. We first present the 
3 methods and then illustrate their behavior on a simple model 
case with simulated data.

Correlation-based reconstruction
Let us first consider the case of P illumination patterns that 
form an orthonormal basis (not necessarily speckle patterns). 
In this case, it is required that P = N, and the measurement 
values Sk = ⟨ϕk, O⟩ = ∑iO(ri)ϕk(ri) correspond to the coordi
nates of the object in the orthonormal basis. Therefore, the 
sampled version of the object may be straightforwardly and 
exactly reconstructed as,

This includes the cases where the illumination patterns are 
raster scanned focused spot (scanning microscopy), combina
tion of Hadamard patterns or combination of fringe patterns. 
When it comes to P speckle illuminations patterns, which usu
ally do not form an orthonormal set of vectors (either because 
P < N or because of correlation between the patterns), the object 
may however be estimated with the following equation [26]:

Equation 9 resembles Eq. 8 but is based on the statistical 
properties of speckle patterns. It corresponds to a pixelwise 
cross correlation between the fluctuations of the measurement 
values and the fluctuations of the illumination patterns at each 
pixel (which are previously measured during the calibration 
stage). In short, it assumes that a given temporal fluctuation 
pattern encodes a single point in space (defined at the scale of 
the speckle grain). While this is the simplest possible recon
struction method, it usually requires a very large number P of 
speckle patterns as compared to the 2 other alternative methods 
presented in the following sections, for equivalent image qual
ities and equivalent objects. Similar to the other methods, it 
allows to reconstruct the estimate of objects with a number P 
of patterns that may be less than the size N of the field of view 
and is thus a straightforward implementation of a compressed 

sensing approach in the case of sparse objects. As illustrated 
further below, it however usually leads to images with a poor 
signaltobackground ratio.

Pseudo-inverse approach
The matrix formulation S = ΦO introduced in the first section 
indicates that reconstructing the object is equivalent to invert
ing a linear problem. While it is only possible in an exact man
ner when P = N and when the set of patterns forms a basis, an 
estimation of the object may nevertheless always be defined as 
the object Ô that minimizes the difference between the mea
sured values and the expected measurement ΦÔ:

where ‖.‖ is the L2 Euclidian norm. An exact solution to this 
L2minimization problem is given by

where Φ+ is the Moore–Penrose pseudoinverse. One practical 
way of computing Φ+ from Φ is to use its singular value decom
position Φ = UΣV†, which straightforwardly provides Φ+ = 
VΣ+U† (Σ+ is obtained by transposing the rectangular diagonal 
matrix Σ and taking the inverse of all nonzero diagonal ele
ments). In most software packages such as Python or MATLAB, 
the function pinv directly provides Ô = pinv(Φ)S. As for the 
correlation approach, the pseudoinverse estimation can be 
computed for any values of P, including P < N. In addition, 
filtering out low singular values provides a straightforward way 
to perform regularization, for instance, to minimize the influ
ence of noise on the reconstruction.

Compressed sensing reconstruction
Compressed sensing methods are powerful tools to compute 
solutions to underdetermined linear problems, such as S = ΦO 
with P < N, provided that there exists a basis in which O have 
a sparse representation. In the following, we assume that O is 
sparse in the physical space. In this case, an estimation of the 
object is given by [18],

where ‖.‖1 is the L1 norm and λ is a regularization parameter. 
Note that λ is generally tuned heuristically to optimally balance 
the contributions of the first term (data fidelity term) to the 
second term (sparsity constraint term). As opposed to the pseudo 
inverse method, there is no simple computational form of the 
solution to Eq. 12, for which iterative minimization algorithms 
must be used. For all the results presented in this work, we used 
the same algorithm as that used by Katz et al. [19]. Note that 
such compressedsensingbased reconstruction approaches 
have also been used in the context of ARPAM [27–29].

Illustration on simulated data
To provide the unfamiliar reader with a feeling of the perform
ances of each method, Fig. 1 provides a comparison of the 3 
reconstructions based on the simplest possible simulated data. 
A binary object (PC logo) was defined over a 40 × 40 grid 
(N = 1,600), and P random speckle patterns were generated 
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through Monte Carlo simulations. The intensity of all N pixels 
followed an exponential distribution, and all patterns were lin
early independent from to each other, with no correlation 
between pixels. The measurements were computed via Eq. 1 
(with no noise). When P = N = 1,600, the object can be recon
structed exactly, via both the pseudoinverse and compressed 
sensing approaches (Fig. 1, middle and right column). However, 
even when P = N = 1,600, the correlationbased reconstruction 
exhibits a substantial background fluctuation, caused by the 
statistical nature of the reconstruction. When P < N, there is 
no exact reconstruction possible as the set of speckle patterns 
is too small to form a basis. In this case, the reconstructions 
from the pseudoinverse approach resemble those obtained 
from the correlationbased approach. On the contrary, the 

compressed sensing approach remains extremely accurate 
down to P = N/4 = 400, thanks to the sparsity of the object. As 
a takehome message from this brief illustration, the pseudo 
inverse approach is the most efficient and computationally 
straightforward and accurate approach when P = N, and the 
compressed sensing approach may still provide very good 
reconstructions for P much smaller than N and sparse objects. 
The compressed sensing approach, however, requires a more 
complex and iterative algorithm. In practice, noise may have a 
substantial influence on the measured data, which both 
pseudoinverse and compressed sensing approaches may mini
mize through a regularization parameter. A comparison of the 
3 approaches on photoacoustic experimental data is shown in 
the next section.

Fig. 1. Illustration of 3 reconstruction approaches (correlation, Moore–Penrose pseudo-inverse, and compressed sensing) on simulated data. The binary object (PC logo) is 
defined over a 40 × 40 grid (N = 1,600). The 3 lines correspond to the number P of speckle patterns used to reconstruct the object with each method.
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Photoacoustic microscopy through a diffuser
In this section, we present experimental results obtained with 
speckle patterns generated through a ground glass diffuser and 
photoacoustic signals detected with a focused ultrasound 
transducer.

Experimental setup
A schematic representation of the experimental setup is shown 
in Fig. 2. The samples used consisted of 2D optically absorbing 
patterns, printed with a highresolution photoplotter (Selba, 
Switzerland) on a transparent polymer substrate (thickness of 
175 μm; Fujifilm HG New HPR7S). The samples were placed 
in a waterfilled microdish on top of a microscope glass cover
slip. The samples were illuminated from the bottom by speckle 
patterns generated through a ground glass diffuser (Thorlabs 
DG10220). The laser light was generated using a single 
longitudinalmode pulsed laser at 532 nm, 5ns pulse duration, 
7kHz pulse repetition rate, and 60 μJ per pulse (Cobolt Thor 
Series). Combinations of lenses and galvanometric mirrors 
were used to control the position and incidence angle of the 
collimated beam onto the diffuser. In practice, the position of 
the beam on the diffuser was kept constant, while both the 
inclination and azimuthal angles were varied to generate dif
ferent speckle patterns on the sample. The diameter of the 
beam on the diffuser was tuned such that the speckle grain size 
in the sample plane was approximately 5 μm.

Fig. 2. Schematic of the experimental setup used to perform imaging photoacoustic microscopy through a diffuser. The sample is held horizontal in a water tank and is 
illuminated by speckle patterns generated through a ground glass diffuser. The diffuser is illuminated by a coherent laser beam, and various speckle realizations are obtained 
by changing the beam positions and incidence on the diffuser. Speckle patterns in the sample plane are first measured with a CCD camera as a calibration step before the 
camera is replaced by a focused ultrasound transducer for the measurement step.

Fig. 3.  Illustration of 3 reconstruction approaches on the same experimental data. 
The absorbing sample (PC logo; photograph shown in A) was illuminated with P = 
1,600 speckle patterns, which approximately corresponds the number of speckle 
grain within the reconstructed total field of view (N = 200 × 200 = 40,000 camera 
pixels). (B) Correlation-based reconstruction. (C) Pseudo-inverse reconstruction. 
(D) Compressed sensing reconstruction. Only part of the reconstructed field of view 
centered on the object is shown. Scale bars, 20 μm.
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The speckle patterns were measured during a calibration 
step (without the sample and without the ultrasound transducer) 
with a chargecoupled device (CCD) camera. Photoacoustic 
signals were detected with a singleelement focused ultrasound 
transducer (Sonaxis HFM2; central frequency of 34 MHz, focal 
length of 12.4 mm) connected to a digital oscilloscope through 
a preamplifier. The singlepixel measurement was defined as 
the peak amplitude of the ultrasound signal. The dimension of 
the reconstructed field of view was 200 μm × 200 μm, which 
corresponded to approximately 40 × 40 = 1,600 speckle grains 
and a number N = 200 × 200 = 40,000 camera pixels. For this 
first proof of principle, photoacoustic signals were averaged 
over 1,000 laser shots for each speckle pattern in order to minimize 
the influence of the measurement noise on the reconstruction.

Results
Figure 3 illustrates the images obtained by each of the 3 recon
struction approaches introduced earlier for the exact same set 
of data. As expected, the best reconstruction is obtained for the 
compressed sensing approach: Both the correlation and pseudo 
inversebased reconstruction exhibit a strong fluctuating back
ground. We note that the pseudoinverse and the compressed 
sensing approach both provide an enhancement resolution as 
compared to the correlation approach. Both approaches take 
into account the known speckle patterns and can be seen as 

deconvolution methods, for which the resolution is dictated by 
the highest spatial frequency content of the speckle pattern, 
whereas the resolution of the correlation approach is given by 
the average speckle size. Figure 4 further illustrates images 
obtained with the compressed sensing approach for 3 different 
samples. The results shown in Figs. 3 and 4, adapted from pre
liminary results presented at a conference [11], demonstrated 
for the first time to our knowledge that speckle patterns could 
be used to perform ORPAM. Because the speckle patterns need 
to be known via a calibration step, this method is obviously not 
adapted to image inside a scattering sample. However, it offers 
an inexpensive and flexible means to perform photoacoustic 
microscopy with no focusing optics, by means of a simple off
theshelf diffuser, following the exact same strategy as that 
developed for purely optical approaches [30,31].

Photoacoustic microendoscopy through  
multimode fibers
Beyond the proofofconcept demonstration presented in the 
previous section, exploiting speckle illumination to perform 
opticalresolution imaging finds an interesting application in 
the context of microendoscopy through multimode fibers 
(MMFs). Optical imaging through MMFs has been the topic 
of extensive research efforts over the past decade [32–36], as it 

Fig. 4. (A to C) Photographs of the 3 absorbing samples obtained with a conventional transmission microscope. (D to F) Corresponding objects reconstructed with the compressed 
sensing approach, from P = 1,600 speckle patterns, which approximately corresponds the number of speckle grain within the reconstructed field of view (N = 200 × 200 = 40,000 
camera pixels). Only part of the reconstructed field of view centered on the object is shown. Scale bars, 25 μm.
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provides a means to design minimally invasive endoscope, as 
compared to more conventional approaches based on bundles 
of singlemode fiber. However, MMFs scramble the light during 
the propagation from the proximal (input) facet of the fiber to 
its distal (sample) facet, and there is no straightforward way to 

image through MMFs. Complex wavefront shaping provides a 
means to deal with multimode propagation and, for instance, 
focus light at the distal end. Focusing through MMF for imaging 
was first demonstrated for fluorescence microendoscopy [35] 
and later adapted to photoacoustic microendoscopy [37,38]. 
However, imaging is also possible by exploiting the speckle 
patterns that are naturally produced at the output of MMFs for 
almost any input patterns. The idea that imaging could be per
formed through MMFs with speckle illumination and single pixel 
detection was first introduced in the 1990s in a pioneer work 
by Bolshtyansky and Zel’dovich [39]. The topic has then become 
very active in the last decade, with an emphasis on the com
pressed sensing capabilities provided by speckle patterns at the 
output of a multimode waveguide [40–43]. Here, we present 
results obtained by adapting the approach initially developed 
for fluorescence microscopy to photoacoustic microendoscopy.

Experimental setup
To obtain the results presented in this work, we used the setup 
shown in Fig. 5, which is the same as that used for our first 
preliminary experiments of photoacoustic microendoscopy 
with speckle illumination [13]. It is further described in more 
detail in a later publication in which we demonstrated that both 
fluorescence and photoacoustic microendoscopy can be per
formed simultaneously with the same setup [44]. A major nov
elty of our approach, as compared as purely optical methods, 
is based on the detection of photoacoustic waves directly at the 
imaging tip of the MMF by adding a FOS next to the MMF. We 
present results obtained with 2 types of multimode waveguides, 
a conventional circular stepindex MMF and a microcapillary 
waveguide. In both cases, we used a custom highly sensitive 

Fig.  5.  Schematic of the experimental setup used to perform photoacoustic 
microendoscopy through a multimode waveguide. Various speckle patterns were 
produced at the output (sample side) of the multimode waveguide using a binary 
amplitude light modulator (DMD, digital micromirror device) that controls the input 
illumination. PBS, polarizing beam splitter. The CMOS (complementary metal–oxide 
semiconductor) camera is used only for the calibration steps to measure the speckle 
patterns in the sample plane. The photoacoustic signals are measured with a fiber 
optic hydrophone attached next to the waveguide.

Fig. 6.  (A) Side-view photograph of a lensless imaging tip composed of a circular 
multimode fiber (MMF) with a fiber optic sensor (FOS) aside. (B) Side-view photograph 
of a lensless imaging tip composed of a capillary with a FOS aside. The speckle 
illumination patterns are created by multimode-guided propagation through either 
the MMF or the capillary walls, and the photoacoustic signal is measured by FOS. The 
sensitive area of the FOS is only 10 μm in diameter. Scale bars, 125 μm.

Fig.  7.  (A and B) Photographs of the 2 absorbing patterns placed at the distal facet 
of a step-index MMF, obtained with a conventional transmission microscope. (C and 
D) Corresponding photoacoustic images obtained by the compressed-sensing-based 
reconstruction approach applied to photoacoustic signals measured by a FOS attached 
next to the MMF. Scale bars, 50 μm.
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FOS, developed at University College London. A detailed 
description of the sensor and its working principle may be 
found in [45]. As compared to our first preliminary results [13], 
which were obtained with a commercial FOS and required 
thousands of averaging in order to reach appropriate signalto
noise ratio, the results presented in the next sections were 
obtained with no more than 100 laser shots per speckle pattern. 
The FOS is only 125 μm in diameter, such that the whole system 
remains minimally invasive, as illustrated in Fig. 6B. Note that 
the active area of the FOS is only 10 μm in diameter, and the 
detector can thus be considered as a pointlike detector.

Results through a conventional circular MMF
Figure 7 shows 2 samples and their photoacoustic images 
obtained through a conventional circular stepindex MMF 
(Thorlabs DCF13; 105μm core/125μm cladding), reconstructed 
with the compressed sensing approach. Four thousand speckle 
patterns (previously measured through a calibration step) 
were used to illuminate the samples. We note that the shape 
of the fiber must remain the same between the calibration and 
the imaging acquisition such that the illumination patterns 
do not vary. Reconstruction was computed over a field of view 
of 200 × 200 pixel, and 100 shots were used per speckle pat
tern to increase the signaltonoise ratio via coherent averag
ing. As illustrated in Fig. 7, various types of objects (beadlike 
or more continuous patterns such as letters) could be imaged 
throughout the whole core of the MMF.

Results through a capillary waveguide
As introduced in some of our earlier works [46,47], microcap
illaries have very interesting waveguide properties, which make 
them of interest for the design of minimally invasive probes. 

Both their glass walls and their inner hole may behave as wave
guides for different types of waves. In our first investigation of 
microcapillaries for photoacoustic sensing [46], we experimen
tally demonstrated that when filled with water, the inner fluid 
core can guide photoacoustic waves from the distal (sample) 
side to a transducer located at the proximal (detector) side. 
Viscous acoustic losses however limited the practical length of 
the device to a few centimeters. We then further demonstrated 
that it was possible to implement complex wavefront shaping 
of light guided through the glass part of the capillary to perform 
either fluorescence or photoacoustic scanning microscopy 
through the capillary [47]. For photoacoustic imaging, not only 
did the approach required wavefront shaping to focus light 
through the device (as for fluorescence) but also the detection 
of the photoacoustic waves was performed with a bulky single 
element transducer, incompatible in practice with a minimally 
invasive device. Here, by using a FOS, we demonstrate that it 
is possible to perform minimally invasive photoacoustic micro
endoscopy with a microcapillary and an alloptical approach. 
The inner core may be used either to insert the FOS inside the 
capillary or, if the FOS is attached next to the capillary, to pro
vide additional functionalities to the microendoscope such as 
a microfluidic access to the sample or the addition of an elec
trode for electrophysiology recording. Figure 8 shows results 
obtained through a capillary waveguide with the FOS attached 
next to it, as illustrated on Fig. 6B. In this case, the field of view 
has the same geometry as the capillary cross section because 
the light is only guided through the glass walls. Although the 
FOS was attached to the side of the capillary, Fig. 8 shows that 
objects located a few hundred microns away from the capillary 
facet could be reconstructed over the whole circumference of 
the capillary.

Fig. 8. (A to D) Photographs of the absorbing pattern (letter π) positioned at different locations at the distal tip of a microcapillary waveguide, obtained with a conventional 
transmission microscope. The dark central zone corresponds to the inside of the capillary, as light is guided only through the glass wall (bright zone). (E to H) Corresponding 
photoacoustic images obtained by the compressed-sensing-based reconstruction approach, applied to photoacoustic signals measured by a FOS attached next to the capillary. 
Scale bars, 100 μm.
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Photoacoustic Microscopy with the Optical 
Memory Effect
In this last section, we consider the case for which the speckle 
patterns are unknown, a situation commonly referred to as 
blind structured illumination. We first recall the principle of 
imaging with blind structured illumination thanks to the opti
cal memory effect, which was introduced in a pioneer work by 
Bertolotti et al. [16] for fluorescence imaging. We then show 
experimental results obtained by following the exact same 
approach for photoacoustic microscopy measurements.

Imaging with unknown speckle patterns via the 
memory effect
Principle of the measurements
We consider ϕk(r, α) the intensity pattern in the sample plane, 
now depending one some given experimental parameter α. In 
the context of this work, α = (αx, αy) describes the direction of 
incidence of a collimated beam onto the diffuser that creates 
the speckle pattern in the sample plane. We now show that even 
if the speckle patterns ϕk(r, α) are unknown, it nonetheless 
remains possible to find relationships between statistical prop 
erties of the measurement and properties of the object. To 
do so, we define the following normalized statistical cross 
correlation functions:

where 〈⋅〉 denotes ensemble averaging over speckle realizations. 
In the definitions above, Sk(α) = ∫rO(r)ϕk(r, α)dr is the mea
surement associated with the kth realization of the illumination 
pattern with parameter α, and x̂k =

xk − ⟨xk⟩��
x2
k
− ⟨xk⟩2

� is defined as 

the standardized centered random variable associated to any 
random variable xk (ϕk and Sk in Eqs. 13A and 13B). The statis
tical correlation between the signals Sk is defined explicitly as,

By introducing the standardized centered variables Ŝk and 
�̂k and assuming that ϕk represents stationary (i.e., mean and 
variance are constant over r and α) and fully developed speckle 

intensity patterns (i.e., 
�

⟨�k⟩2 − ⟨�k⟩2 = ⟨�k⟩), tedious but 
simple calculations lead to the following explicit expression 
equivalent to Eq. 13B:

where K =

√
⟨Sk⟩2− ⟨Sk⟩2

⟨Sk⟩
 corresponds to the contrast of the 

measured signal. In the most general case where the speckle 
patterns �̂k(r,�) and �̂k

(
r
′,�′

)
 are uncorrelated, both Cϕ = 0 

and CS = 0 for α ≠ α′ and the equation above carries no infor
mation on the object O(r). Here, we consider that the speckle 
patterns produced by illuminating the sample through a thin 
diffuser exhibits a shift memory effect in the sample plane when 
the laser beam is tilted onto the diffuser. In this case, under the 
classical assumption that speckle patterns are secondorder 
stationary random process, the memory effect is described 
analytically through the following tilt–shift relationship:

where F is the distance between the object plane and the dif
fuser, c�(‖Δr‖ ) =

�
�̂k(r +Δr) × �̂k(r)

�
 is the spaceinvariant 

autocorrelation of a speckle intensity pattern, and g(Δα) is a 
function peaked around zero that describes the range of the 
memory effect (g = 1 for a perfect memory effect). Finally, by 
a change of variables in Eq. 14, one finally gets the following 
expression for the statistical crosscorrelation function of the 
measurement:

Equation 16 states that thanks to the optical memory effect, 
the statistical crosscorrelation function of measurements ob 
tained for various incidence angles (as defined by α) is equal 
to the normalized spatial autocorrelation of the object CO con
volved with the statistical autocorrelation of a speckle intensity 
pattern CΦ, weighted by the range of the memory effect. This 
result was first given and exploited by Bertolotti et al. [16] to 
perform fluorescence imaging through a diffuser: Because the 
autocorrelation function of a speckle pattern is a peaked func
tion with a width given by the size of a speckle grain, the auto
correlation of the measurements is directly a measurement of 
the autocorrelation of the object, with the resolution of the 
speckle grain and a range limited by the memory effect. In 
practice, a robust statistical estimation of CS(Δα) often requires 
both ensemble averaging over speckle realization and averaging 
over measurements for a given value of CS(Δα) (i.e., computing 
a spatial correlation of the measurements for a given speckle 
realization) thanks to ergodicity.

Image reconstruction
As introduced in the previous section, the statistical correlation 
of the measurements obtained for various incidence angles 
provides an estimation of the spatial autocorrelation function 
of the object. To reconstruct the object, it is thus necessary to 
invert the spatial autocorrelation. From the Fourier convolution 
theorem, the knowledge of the autocorrelation of an object 
yields the modulus of its Fourier transform, which is not 
enough to retrieve the object itself, as the phase of its Fourier 
transform is missing. Nevertheless, it is possible to numeri
cally invert the autocorrelation and estimate the object by set
ting constraints such as the object is positive and/or realvalued 
and run iterative phase retrieval algorithms [16,48]. For both 
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fluorescence microscopy and photoacoustic microscopy, the 
target to reconstruct is the absorption coefficient, which is both 
real and positive: To obtain the experimental results presented 
in the next section, we followed Bertolotti et al. [16] and used 
a modified version of the Gerchberg–Saxton proposed by 
Fienup [48] in a seminal paper published in the late 1970s.

Experimental validation through a thin  
scattering layer
To demonstrate blind structured illumination photoacoustic 
microscopy through a thin diffuser with the memory effect, we 
used the exact same setup as shown in Fig. 2. Galvanometric 
mirrors coupled to 4f systems (not shown in the figure) were 
used to vary the beam incidence angle onto the diffuser while 
keeping the same beam position and to scan a given speckle 
pattern over the diffuser thanks to the memory effect. With the 
thin diffuser used, the memory effect in the sample plane 
extended over several hundred microns, much larger than the 
size of the objects to reconstruct, and its finite range was thus 
neglected in the reconstruction (g(α) = 1). Figure 9 shows the 
results obtained for 3 different types of objects. Statistical 
crosscorrelations were estimated by averaging over 13 (sample 
a), 5 (sample b), and 8 (sample c) speckle realizations and by 
averaging over space thanks to ergodicity. Speckle patterns were 
scanned with a step of 4 μm in the sample plane, with scan 
dimensions 41 × 41 (sample a), 51 × 51 (sample b), and 51 × 51 

(sample c), although all reconstructions are shown with the 
same field of view. The photoacoustic images shown in Fig. 9 
are, to our knowledge, the first photoacoustic microscopy 
images obtained through a diffusing medium with a blind struc
tured illumination. A scanning approach with a speckle pattern 
was also mentioned by Meiri et al. [12], but the speckle pattern 
has to be known, and this approach is in the end equivalent to 
multiple speckle illumination with known patterns.

Discussion
In this paper, we recalled the general principle of singlepixel 
imaging with structured illumination, which we applied in this 
work to photoacoustic imaging. From singlepixel photoacoustic 
measurements, obtained for multiple speckle illumination, 
images of absorbing samples are reconstructed through various 
possible reconstructions. The common link between the different 
experiments presented here is the possibility to straightforwardly 
generate speckle illuminations in a controlled and reproducible 
way, either with a diffuser or an MMF. This fine control in com
bination with compressed sensing methods allows to reconstruct 
the image with the resolution given by the size of the optical 
speckle grain, which is the same as the size of a focal spot created 
through an equivalent numerical aperture. The major limitation 
of approaches based on multiple speckle illumination, common 
to other types of widefield structured illumination patterns 

Fig. 9.  (A to C) Photographs of the 3 absorbing samples obtained with a conventional transmission microscope. (D to F) Corresponding objects reconstructed from the 
photoacoustic measurements obtained by scanning unknown speckle patterns over the sample hidden behind a diffuser, with use of the optical memory effect. Scale bars, 25 μm.
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and shared by different detection modalities such as fluores
cence and photoacoustics, is related to the fluctuationtonoise 
ratio: the information on the object to reconstruct is contained 
within the signal fluctuations, rather than the signal amplitude 
itself. Large objects, as compared to the characteristic size of 
the illumination pattern (i.e., the size of the speckle grain for 
speckle illumination), lead to small values of the fluctuation 
tosignal ratio. The ability to measure speckleinduced fluc
tuations on top of noise fluctuations thus depends on both the 
signaltonoise ratio and the available dynamic range. From 
this perspective, methods based on raster scanning of focal spot 
are generally much more efficient as compared to structured 
illumination.

In the context of photoacoustic microscopy, we recently 
demonstrated that the highly sensitive FOS developed at University 
College London [45] enabled singleshot photoacoustic micros
copy through an MMF by scanning a spot with complex wave
front shaping [38]. In the results present here, the same FOS 
required averaging over typically a hundred shots to get images 
of similar quality via multiple speckle illumination. From the 
perspective of the total measurement time (which dictates the 
imaging frame rate), multiple speckle illumination may require 
orders of magnitude less patterns than raster scan approaches, 
provided that the sample to image is very sparse. The number 
of random patterns (and consequently the measurement time) 
depends strongly on the number of nonzero pixels in the object, 
whereas it is directly proportional to the field of view and inde
pendent from the sample for raster scan approaches. Moreover, 
the sparsest the sample, the higher the fluctuationtonoise 
ratio, which is also a key parameter as the total acquisition time 
will depend not only on the number of patterns but also on the 
number of averages per illumination pattern. In the experi
ments presented in Figs. 7 and 8, we used about 10 times less 
speckle patterns than pixels in the image (4,000 patterns versus 
200 × 200 pixels), but because of the limited fluctuationtonoise 
ratio, we had to average about 100 times. In this case, the advan
tage of the approach was, thus, not the total acquisition time, 
which was 10 times larger the equivalent acquisition time for 
a raster scan approach, but rather its simplicity: Raster scanning 
a focal spot would have required a rather involved calibration 
to be able to create and scan a focal spot, while calibrating only 
the speckle intensity pattern was straightforward. Additionally, 
in biomedical photoacoustic imaging, which uses pulsed laser, 
it is important to stay below the maximum permissible expo
sure for tissue, and therefore, spreading the illumination into 
speckle patterns instead of creating a strong bright focal point 
can be important to reduce the thermal damage. For very sparse 
samples, multiple speckle illumination is expected to be also 
beneficial in terms of total acquisition time, but this was not 
demonstrated here.

In the end, the choice between a multiple speckle illumina
tion approach and a more conventional scanning approach will 
depend on several considerations, including tradeoffs between 
instrumental complexity (usually for wavefrontshapingbased 
approaches) and reconstruction complexity (for compressed 
sensing approach with structured illumination) and between 
signaltonoise performances (higher for scanning based approach) 
and acquisition time (potentially shorter for structured illumi
nation and sparse sample).

The results presented in this work illustrate how photoacoustic 
microscopy can harness many of the structured illumination 
methods developed initially for pure optical methods such as 

fluorescence microscopy simply by replacing light detection 
with acoustic detection. As a consequence, multimodality 
approaches may be implemented with the same illumination 
scheme, as we demonstrated with hybrid fluorescence and photo
acoustic microscopy with multiple speckle illumination [44]. 
As a major drawback for widefieldstructured illumination 
approach, the sensitivity of photoacoustic detection remains 
relatively low as compared to fluorescence sensing, but we hope 
that the development of more and more sensitive detectors 
[45,49,50] will enable biomedical applications of singlepixel 
photoacoustic microscopy in the near future.
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